设一个nn个节点的二叉树tree的中序遍历为(1,2,3,…,n1,2,3,…,n),其中数字1,2,3,…,n1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第ii个节点的分数为di,treedi,tree及它的每个子树都有一个加分,任一棵子树subtreesubtree(也包含treetree本身)的加分计算方法如下:
subtreesubtree的左子树的加分× subtreesubtree的右子树的加分+subtreesubtree的根的分数。
若某个子树为空,规定其加分为11,叶子的加分就是叶节点本身的分数。不考虑它的空子树。
试求一棵符合中序遍历为(1,2,3,…,n1,2,3,…,n)且加分最高的二叉树treetree。要求输出;
(1)treetree的最高加分
(2)treetree的前序遍历
第11行:11个整数n(n<30)n(n<30),为节点个数。
第22行:nn个用空格隔开的整数,为每个节点的分数(分数<100<100)。
第11行:11个整数,为最高加分(Ans \le 4,000,000,000≤4,000,000,000)。
第22行:nn个用空格隔开的整数,为该树的前序遍历。
5
5 7 1 2 10
145
3 1 2 4 5